ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Solve Using a Matrix by Row Operations 3x+2y-z=-16 , 6x-4y+3z=12 , 5x-2y+2z=4
, ,
Π­Ρ‚Π°ΠΏ 1
Write the system as a matrix.
Π­Ρ‚Π°ΠΏ 2
ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ ΠΊ стандартной Ρ„ΠΎΡ€ΠΌΠ΅ ΠΏΠΎ строкам.
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.1
Multiply each element of by to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.1.1
Multiply each element of by to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.1.2
Упростим .
Π­Ρ‚Π°ΠΏ 2.2
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.2.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.2.2
Упростим .
Π­Ρ‚Π°ΠΏ 2.3
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.3.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.3.2
Упростим .
Π­Ρ‚Π°ΠΏ 2.4
Multiply each element of by to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.4.1
Multiply each element of by to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.4.2
Упростим .
Π­Ρ‚Π°ΠΏ 2.5
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.5.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.5.2
Упростим .
Π­Ρ‚Π°ΠΏ 2.6
Multiply each element of by to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.6.1
Multiply each element of by to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.6.2
Упростим .
Π­Ρ‚Π°ΠΏ 2.7
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.7.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.7.2
Упростим .
Π­Ρ‚Π°ΠΏ 2.8
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.8.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.8.2
Упростим .
Π­Ρ‚Π°ΠΏ 2.9
Perform the row operation to make the entry at a .
НаТмитС для увСличСния количСства этапов...
Π­Ρ‚Π°ΠΏ 2.9.1
Perform the row operation to make the entry at a .
Π­Ρ‚Π°ΠΏ 2.9.2
Упростим .
Π­Ρ‚Π°ΠΏ 3
Use the result matrix to declare the final solution to the system of equations.
Π­Ρ‚Π°ΠΏ 4
The solution is the set of ordered pairs that make the system true.